

COMUNE DI PORTO MANTOVANO

PROVINCIA DI MANTOVA REGIONE LOMBARDIA

PROGETTAZIONE DEFINITIVA

PER L'AMPLIAMENTO DELLA SEDE DI PORTO EMERGENZA

PROPONENTE

COMUNE DI PORTO MANTOVANO

Strada Statale Cisa, n°112 – 46047 Porto Mantovano (MN)

	PROGETTISTA INCARICATO	PROGETTISTA SPECIALISTA	DATA Marzo 2019	
	ARCHITETTO VITTORIO DI TURI			
	Casale Setteventi. nº 95	ETC Studio	N. PROT.	

Casale Setteventi, n° 95
15060 - Silvano d'Orba (AL)
Via E. Medi, n° 1
35010 - Vigonza (PD)

OGGETTO DOC. N.

RELAZIONE IDRAULICA
VERIFICA DI COMPATIBILITA' IDRAULICA

QbII.01

ВООК

REV.

3A.7

RELAZIONE IDRAULICA

3A.7 Qbll.01 – Relazione Idraulica Verifica di Compatibilità Idraulica.

3A.7.1 CALCOLO DEL BACINO DI ACCUMULO.

Considerazioni Preliminari.

La relazione presente tra l'altezza (h) delle precipitazioni e la loro durata è espresse da una curva di possibilità pluviometrica definita dalla seguente espressione:

$$h = (a*t) / (t + b)^c$$
 con t in minuti

Il "tempo di ritorno" noto nella letteratura tecnica inglese come "return time" (tempo nel quale l'evento viene, mediamente, uguagliato o superato) considerato è di 50 anni.

Per tale tempo di ritorno i parametri di *a, b* e *c* sono:

$$a = 39.7$$
 $b = 16.4$ $c = 0.800$

Per il dimensionamento delle portate dei bacini è stato assunto un pluviogramma di progetto con altezza di precipitazione costante (ietogramma costante), durante l'intero periodo di pioggia, e pari all'altezza fornita dalla curva di possibilità pluviometrica.

Al fine di stimare e verificare gli effetti della variazione d'uso del suolo nel sistema idraulico in cui si inserisce, si sono eseguite le calcolazioni per tempi di pioggia variabili da 1 ora a 12 ore. Utilizzando la curva di possibilità pluviometrica, si ottengono i seguenti valori:

Tempo di pioggia	altezza di precipitazione	Intensità di pioggia		
ore	mm	mm/ora		
1	74,2	74.21		
2	93,4	46.68		
3	104,6	34.87		
4	112,7	28.17		
5	119,0	23.81		
6	124,3	20.72		
7	128,9	18.41		
8	132,9	16.61		
9	136,4	15.16		
10	139,7	13.97		
11	142,6	12.97		
12	145,4	12.11		

Calcolo del Coefficiente di Deflusso e del Volume di Invaso.

Una volta individuata l'entità delle precipitazioni è da stimarsi quale frazione di essa viene raccolta dalla rete di collettori: frazione individuata da un "<u>coefficiente di deflusso</u>", inteso come rapporto tra il volume defluito attraverso un'assegnata sezione in un definito intervallo di tempo ed il volume meteorico precipitato nell'intervallo stesso.

Detto ϕ_i il coefficiente di deflusso relativo alla superficie S_i il valore medio del coefficiente relativo ad aree caratterizzate da differenti valori di ϕ si ottiene con una media ponderale:

$$\phi_{medio} = \sum \phi_i S_i / \sum S_i$$

I coefficienti di deflusso andranno convenzionalmente assunti pari a 0,1 per le aree agricole, 0,2 per le superfici permeabili (aree verdi), 0,6 per le superfici semi-permeabili (grigliati drenanti con sottostante materasso ghiaioso, strade in terra battuta o stabilizzato,...) e pari a 0,9 per le superfici impermeabili (tetti, terrazze, strade, piazzali,...).

Il calcolo dei volumi di invaso è eseguito con il metodo cinematico dato dall'equazione:

$$Wi = We - Wu = S \phi h - Qu t$$

Calcolo del Volume da Ricavare.

COMUNE	PORTO M	IANTOVANO	UBICATA IN		via Martiri	di Bologna	
OGLIO CATASTALE N.		g	PARTICLELI	LA N.		861	
PARAMETRI IDROL							
a	39,7						
b c	16,4 0,8						
C	0,0						
	DIS	STINTA SUPERI	FICI DEL LOT	TO EDIFICABI	LE		
Superfici agricole:						0	mq
Superfici permeabili (giardini, aree a verde):						591,75	mq
Superfici semi-permeabili (grigliati drenanti con sottostante materasso ghiaioso, strade in terra battuta o stabilizzato,):						87,56	mq
Superfici impermeabili (tetti,	terrazze, str	ade, piazzali, vi	ali):			660,69	mq
						=======	
SUPERFICIE TOTALE LOTTO	O (S):					1340	mq
Coefficiente di deflusso me	dio ponderato	o (cd) :	0,57				
Superficie utile al deflusso	(S x cd):		765,507	mq			
Portata massima in usci	ita (5 o 10 l/s	a seconda de	ella ubicazion	e del lotto):		10	l/s
Volume da ricavare :	:		67,01	mc			
Volume specifico :			500,09	mc/ha			
Duosis	::			Matada Ci			
	itazioni	h	We	Metodo Ci Wu	Wi	Vo'	
Tp min	ore	mm	mc we	mc	mc wi	mc/ha	
60	1	74,2	57	5	52	387,95	
120	2	93,4	71	10	62	461,29	
180	3	104,6	80	14	66	489,58	
240	4	112,7	86	19	67	489,38	
300	5	112,7	91	24	67	500,09	
360	6	124,3	95	29	66	494,26	
420	7	128,9	99	34	65	484,17	
480	8	132,9	102	39	63	470,95	
540	9	136,4	104	43	61	455,33	
J-U	10	130,4	107	48	59	433,33	
600	10	100,1	101	40	J.J	757,00	
600 660	11	142,6	109	53	56	418,73	

Definizione del Bacino di Accumulo.

Scopo dell'intervento è quello di non aggravare, con l'apporto di maggiori portate provenienti dalle precipitazioni, la situazione idrica della zona. Per tale motivo si vuole progettare una rete idrica che porti a far defluire la stessa portata ante intervento di costruzione, accumulando in apposito bacino l'acqua captata dalle superfici scolanti.

Il bacino di accumulo di progetto è costituito da una condotta DN 1000 mm e n. 3 pozzetti 120 x 120 x 150:

 $VØ1000 = LØ1000 \times A$

 $= (16,00+48,00+16,00) \text{ ml } \times 0.785$

 $= 80,00 \text{ ml } \times 0,5024 = 62,80 \text{ mc}$

Vpozzetti = 3x(1,2x1,2x1,5) m = 6,48 mc

Vtotale = 62,80 mc + 6,48 mc = 69,28 mc > 67,01 mc

Vedi elaborato grafico con la planimetria dell'intervento e lo schema fognario delle acque bianche. Nel calcolo del bacino non è stato considerato il pozzetto n. 1 posizionato al termine delle condotte prima dello scarico nella fognatura mista in quanto dovrà essere dotato di paratia con bocca tarata e stramazzo e pompa di sollevamento.

La quota di fondo delle condotte in corrispondenza del pozzetto n.1 sarà di -1,50 ml mentre la quota di fondo delle condotta ricevente (fognatura mista) è di circa -0,86 ml da cui la necessità dell'impianto di sollevamento. In fase di realizzazione si prescrive la verifica preventiva della quota del pozzetto di scarico e la posizione dell'allaccio dovrà essere verificata in loco con la Direzione Lavori.

Per lo scarico di fondo si è optato per una condotta DN200 che garantisce uno scarico massimo nella fognatura esistente di 10 l/s per ettaro.

Conclusioni.

Dalle verifiche riportate si evince che nella situazione più impegnativa, presa in esame dall'elaborazione statistica, il bacino di accumulo costituito dalla tubazione Ø1000 e dai n.3 pozzetti 120x120, riesce a contenere tutta la precipitazione. Durante tutta la durata di quest'ultima, la portata scolata nella fognatura è quella smaltita dallo scarico di fondo.

Si conclude pertanto che l'intervento è verificato sotto il profilo della compatibilità idraulica alle normative vigenti.

Setteventi, lì 11/03/2019